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Cyclic Codes

Cyclic Codes were first studied by Prange in 1957.

Prange, E. Cyclic error-correcting codes in two symbols. Technical
Note TN-57-103, Air Force Cambridge Research Labs., Bedfrod,
Mass.



Cyclic Codes

Cyclic codes are an extremely important class of codes – initially
because of an efficient decoding algorithm.

A code C is cyclic if
(a0, a1, . . . , an−1) ∈ C =⇒ (an−1, a0, a1, a2, . . . , an−2) ∈ C .

Let π((a0, a1, . . . , an−1)) = (an−1, a0, a1, a2, . . . , an−2). So a cyclic
code C has π(C ) = C .
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Cyclic Codes

There is a natural connection from vectors in a cyclic code to
polynomials:

(a0, a1, . . . , an−1)↔ a0 + a1x + a2x2 . . . an−1xn−1

Notice that π((a0, a1, . . . , an−1)) corresponds to
x(a0 + a1x + a2x2 . . . an−1xn−1) (mod xn − 1).
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Cyclic Codes

If C is linear over F and invariant under π then a cyclic code
corresponds to an ideal in F [x ]/〈xn − 1〉.

Cyclic codes are classified by finding all ideals in F [x ]/〈xn − 1〉.

Easily done when the length of the code is relatively prime to the
characteristic of the field, that is we factor xn − 1 uniquely in F [x ].
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Cyclic Codes

Theorem
Let C be a non-zero cyclic code in F [x ]/〈xn − 1〉, then

I There exists a unique monic polynomial g(x) of smallest
degree in C;

I C = 〈g(x)〉;
I g(x) is a factor of xn − 1.
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A degree r generator polynomial generates a code with dimension
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Cyclic Codes

Let xn − 1 = p1(x)p2(x) . . . ps(x) over F . Then there are 2s cyclic
codes of that length n.



Cyclic Codes

Let g(x) = a0 + a1 + · · ·+ ar .
a0 a1 a2 . . . ar 0 0 . . . 0
0 a0 a1 a2 . . . ar 0 . . . 0
0 0 a0 a1 a2 . . . ar . . . 0
...
0 0 . . . 0 a0 a1 a2 . . . ar


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If g(x) is the generator polynomial, let h(x) = xn−1
g(x) .

Then c(x) ∈ C if and only if c(x)h(x) = 0.
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Let h(x) = b0 + b1x + · · ·+ bkxk .

C⊥ is generated by
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Golay Code

As an example, if C is the [23, 12, 7] perfect Golay code:

g(x) = 1 + x2 + x4 + x5 + x6 + x10 + x11

If C is the [11, 6, 5] ternary Golay code:

g(x) = 2 + x2 + 2x3 + x4 + x5
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Constacyclic Codes

A code C is constacyclic if
(a0, a1, . . . , an−1) ∈ C =⇒ (λn−1, a0, a1, a2, . . . , an−2) ∈ C for
some λ ∈ F .

If λ = −1 the codes are said to be negacyclic.

Under the same reasoning, constacyclic codes corresponds to ideals
in F [x ]/〈xn − λ〉.
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Cyclic Codes over Z4

Let n be odd.

Let µ : Z4[x ]→ Z2[x ] that reads the coefficients modulo 2.

A polynomial f in Z4[x ] is basic irreducible if µ(f ) is irreducible in
Z2[x ]; f is primary if 〈f 〉 is a primary ideal.
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Cyclic Codes over Z4

Lemma
If f is a basic irreducible polynomial, then f is primary.

Lemma
If xn − 1 = f1f2 . . . fr , where the fi are basic irreducible and
pairwise coprime, then this factorization is unique.

Lemma
Let xn − 1 = f1f2 . . . fr be a product of basic irreducible and
pairwise coprime polynomials for odd n and let f̂i denote the
product of all fj except fi . Then any ideal in the ring

Z4[x ]/〈xn − 1〉 is a sum of some 〈f̂i 〉 and 〈2f̂i 〉.
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Cyclic Codes over Z4

Theorem
The number of Z4 cyclic codes of length n is 3r , where r is the
number of basic irreducible polynomial factors in xn − 1.



Cyclic Codes over Z4

Theorem
Let C be a Z4 cyclic code of odd length n. Then there are unique,
monic polynomials f , g , h such that C = 〈fh, 2fg〉 where
fgh = xn − 1 and |C | = 4deg(g)2deg(h).



Cyclic Codes over Z4

Theorem
Let C = 〈fh, 2fg〉 be a quatenray cyclic code of odd length, with
fgh = xn − 1. Then C⊥ = 〈gh, 2gh〉.



Cyclic Codes over Z4 of even length

Let n be an odd integer and N = 2kn will denote the length of a
cyclic code over Z4.

Define the ring R = Z4[u]/〈u2k − 1〉.

We have a module isomorphism Ψ : Rn → (Z4)2
kn defined by

Ψ(a0,0 + a0,1u + a0,2u2 + · · ·+ a0,2k−1u2k−1, . . . ,

an−1,0 + an−1,1u + an−1,2u2 + · · ·+ an−1,2k−1u2k−1)

= (a0,0, a1,0, a2,0, a3,0, . . . , an−1,0, a0,1, a1,1, a2,1

. . . , a0,2k−1, a1,2k−1, . . . , an−1,2k−1).
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Cyclic Codes over Z4 of even length

We have that

Ψ

u

2k−1∑
j=0

an−1,ju
j

 ,

2k−1∑
j=0

a0,ju
j ,

2k−1∑
j=0

a1,ju
j , . . . ,

2k−1∑
j=0

an−2,ju
j


= (an−1,2k−1, a0,0, a1,0, . . . , an−2,2k−1).

This gives that a cyclic shift in (Z4)2
kn corresponds to a

constacyclic shift in Rn by u.



Cyclic Codes over Z4 of even length

Theorem
Cyclic codes over Z4 of length N = 2kn correspond to constacyclic
codes over R modulo X n − u via the map Ψ.



Generalizations

S.T. Dougherty, Young Ho Park, On Modular Cyclic Codes , Finite
Fields and their Applications Volume 13, Number 1, 31-57, 2007.



Generalizations

Cyclic codes of length N over a ring R are identified with the
ideals of R[X ]/〈XN − 1〉 by identifying the vectors with the
polynomials of degree less than N.



Generalizations

Every cyclic code C over Fq is generated by a nonzero monic
polynomial of the minimal degree in C , which must be a divisor of
XN − 1 by the minimality of degree.



Generalizations

Since Fq[X ] is a UFD, cyclic codes over Fq are completely
determined by the factorization of XN − 1 whether or not N is
prime to the characteristic of the field, even though when they are
not relatively prime we are in the repeated root case.



Generalizations

For cyclic codes over Zpe if the length N is prime to p, XN − 1
factors uniquely over Zpe by Hensel’s Lemma.



Generalizations

All cyclic codes over Zpe of length prime to p have the form

〈f0, pf1, p
2f2, . . . , p

e−1fe−1〉,

where fe−1 | fe−2 | · · · | f0 | XN − 1.

These ideals are principal:

〈f0, pf1, p
2f2, . . . , p

e−1fe−1〉 = 〈f0 + pf1 + p2f2 + · · ·+ pe−1fe−1〉.
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Generalizations

Therefore, cyclic codes of length N prime to p are again easily
determined by the unique factorization of XN − 1. The reason that
the case when the characteristic of the ring divides the length N is
more difficult is that in this case we do not have a unique
factorization of XN − 1.



Generalizations

Let C be a (linear) cyclic code of length N over the ring ZM ,
where M and N are arbitrary positive integers.



Generalizations

We use the Chinese Remainder Theorem to decompose the code C ,
i.e. an ideal of ZM [X ]/〈XN − 1〉, into a direct sum of ideals over
Zp

ei
i

according to the prime factorization of M = pe1
1 pe2

2 . . . per
r .



Generalizations

Therefore, it is enough to study cyclic codes over the rings Zpe for
a prime p.



Generalizations

Fix a prime p and write N = pkn, p not dividing n.



Generalizations

Define an isomorphism between Zpe [X ]/〈XN − 1〉 and a direct
sum, ⊕i∈I §pe (mi , u), of certain local rings. This shows that any
cyclic code over Zpe can be described by a direct sum of ideals
within this decomposition.



Generalizations

The inverse isomorphism can also be given, so that the
corresponding ideal in Zpe [X ]/〈XN − 1〉 can be computed
explicitly.



Generalizations

R = Zpe and write

RN = Zpe [X ]/〈XN − 1〉,

so that RN = RN after the identification.



Generalizations

By introducing an auxiliary variable u, we break the equation
XN − 1 = 0 into two equations X n − u = 0 and upk − 1 = 0.
Taking the equation upk − 1 = 0 into account, we first introduce
the ring

R = Zpe [u]/〈upk − 1〉.



Generalizations

There is a natural R-module isomorphism Ψ : Rn → RN defined by

Ψ(a0, a1, . . . , an−1) = (a00, a
1
0, . . . , a

n−1
0 , a01, a

1
1, . . . , a

n−1
1 ,

. . . , a0pk−1, a
1
pk−1, . . . , a

n−1
pk−1)

where ai = ai0 + ai1u + · · ·+ ai
pk−1upk−1 ∈ R for 0 ≤ i ≤ n − 1.



Generalizations

u is a unit in R and

Ψ(uan−1, a0, . . . , an−2) = Ψ(an−1
pk−1 + an−10 u + . . .

+ an−1
pk−2upk−1, a0, . . . , an−2)

= (an−1
pk−1, a

0
0, . . . , a

n−2
0 , an−10 , a01,

. . . , an−21 , . . . , an−1
pk−2, a

0
pk−1, . . . , a

n−2
pk−1).



Generalizations

The constacyclic shift by u in Rn corresponds to a cyclic shift in
RN .



Generalizations

We identify Rn with R[X ]/〈X n − u〉, which takes the equation
X n − u = 0 into account.



Generalizations

View Ψ as a map from R[X ]/〈X n − u〉 to RN , we have that

Ψ

n−1∑
i=0

( pk−1∑
j=0

aiju
j
)

X i

 =
n−1∑
i=0

pk−1∑
j=0

aijX
i+jn.



Generalizations

Ψ is an R-module isomorphism, we

Ψ(ujX i ) = X i+jn

for 0 ≤ i ≤ n − 1 and 0 ≤ j ≤ pk − 1.



Generalizations

Let 0 ≤ i1, i2 ≤ n − 1 and 0 ≤ j1, j2 ≤ pk − 1. Write
i1 + i2 = δ1n + i , and j1 + j2 = δ2pk + j such that 0 ≤ i ≤ n − 1
and 0 ≤ j ≤ pk − 1. Clearly δi = 0 or 1.



Generalizations

Since upk = 1, X n = u in R[X ]/〈X n − u〉 and X pkn = 1 in
R[X ]/〈XN − 1〉 we have that

Ψ(uj1X i1uj2X i2) = Ψ(uj1+j2X i1+i2) = Ψ(uj+δ1X i ) = X i+(j+δ1)n

= X i+δ1nX jn = X i1+i2X (j1+j2)n = Ψ(uj1X i1)Ψ(uj2X i2).



Generalizations

By the R-linearity property of Ψ, it follows that Ψ is a ring
homomorphism.

Lemma
Ψ is an R-algebra isomorphism between R[X ]/〈X n − u〉 and
R[X ]/〈XN − 1〉. Furthermore, the cyclic codes over R of length N
correspond to constacyclic codes of length n over R via the map Ψ.



Generalizations

The ring R is a finite local ring, and hence the regular polynomial
X n − u has a unique factorization in R[X ]

X n − u = g1g2 . . . gl

into monic, irreducible and pairwise relatively prime polynomials
gi ∈ R[X ], and by the Chinese Remainder Theorem

R[X ]/〈X n − u〉 ' R[X ]/〈g1〉 ⊕ · · · ⊕ R[X ]/〈gl〉.

This isomorphism will give us a decomposition of RN via the map
Ψ.



Generalizations

Cyclic codes can also be studied over the infinite p-adic integers.
A. R. Calderbank and N. J. A. Sloane, Modular and p-Adic Cyclic
Codes, Designs, Codes and Cryptography, 6 (1995), pp. 21-35.



Skew Cyclic Codes

Let F be a field and θ an automorphism of the field.

A θ-cyclic code is a linear code C with the property that

(a0, a1, . . . , an−1) ∈ C =⇒ (θ(an−1), θ(a0), θ(a1), . . . , θ(an−2) ∈ C .
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Skew Cyclic Codes

F [X , θ] = {a0 + a1X + · · ·+ an−1X n−1 | ai ∈ F}

Addition is the usual addition and Xa = θ(a)X , then extend by
associativity and distributivity.
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Skew Cyclic Codes

Let ψ : F [X , θ]→ F [X , θ]/〈X n − 1〉.

Theorem
Let F be a finite field, θ an automorphism of F and n an integer
divisible by the order of θ. The ring F [X , θ]/〈X n − 1〉 is a principal
left ideal domain in which left ideals are generated by ψ(G ) where
G is a ring divisor of X n − 1 in F [X , θ].
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Theorem
Let F be a finite field, θ an automorphism of F and n an integer
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Skew Cyclic Codes

Theorem
Let F be a finite field, θ an automorphism of F and n an integer
divisible by the order of θ. Let C be a linear code of length n. The
code C is a θ-cyclic code if and only if the skew polynomial
representation of C is a left idea in F [X , θ]/〈X n − 1〉.


